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Communications to the Editor 

Evidence for a Nonoxidative Cyclization of Squalene 
in the Biosynthesis of Tetrahymanol 

Sir: 

The intermediacy of squalene 2,3-oxide in the enzy­
matic conversion of squalene to lanosterol and cho­
lesterol in the rat-liver system has been elegantly demon­
strated.1-3 Further investigations have shown this 
epoxide to be efficiently incorporated by a homogenate 
of Pisum sativum into ^-amyrin4 and by the mold Fusid-
ium coccineum into fusidic acid.6 Squalene 2,3-oxide 
has also been implicated as an intermediate in the bio­
synthesis of phytosterols by its isolation, along with 
cycloartenol, from tobacco tissue cultures6 and by its 
conversion to cycloartenol in bean leaves.7 

These findings are strongly suggestive of a general 
role in nature for squalene 2,3-oxide as the precursor 
of polycyclic triterpenes possessing a 3/3-hydroxyl 
group. However, suggestions have also been made 
that nonoxidative mechanisms8 for the enzymatic 
cyclization of squalene also need to be considered, par­
ticularly in the formation of triterpenes lacking a C-3 
oxygen function.9-12 For example, in the cases of 
zeorin,13 ambrein,14 diplopterol,ls dustanin,10 and 
serratene,12 biosynthetic mechanisms have been postu­
lated involving the cyclization of squalene initiated by 
direct protonation at C-3. The apparent absence of 
any direct experimental evidence for the existence of a 
biosynthetic pathway from squalene to a polycyclic 
triterpene not involving squalene 2,3-oxide as an inter­
mediate led us to carry out the experiments we report 
here. 

For the triterpene tetrahymanol,16 isolated from the 
protozoan Tetrahymena pyriformis17 and shown to have 
structure 1,u-17 both the oxidative and the nonoxidative 
mechanisms appear potentially possible. Thus, tetra­
hymanol (cf. Ib) might conceivably be derived from 
cyclization of squalene 2,3-oxide, initiated by protona-
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tion on oxygen and terminated either by the direct 
acquisition at C-21 of hydride (possibly from NADPH 
or NADH) or by nucleophilic hydroxylation at C-21 to 
give a 3/3,21 a-diol with subsequent reductive elimination 

la lb 

of one of these two equivalent hydroxyl groups. Al­
ternatively, the biosynthesis of tetrahymanol (cf Ia) 
might proceed as previously proposed16 by the equiva­
lent of a proton-initiated cyclization of squalene with 
terminal nucleophilic hydroxylation, as indicated for­
mally in 2. 

2 

We have been able to differentiate between these two 
cyclization schemes by incubating a mixture of r e ­
labeled squalene and 3H-labeled squalene 2,3-oxide 
with Tetrahymena pyriformis and analyzing the isolated 
radioactive tetrahymanol. 

[l,5,9,16,20,24-14C]Squalene was obtained from the 
anaerobic incubation18 of DL-[2-14C]mevalonic acid 
dibenzylethylamine salt with the microsomal and 
supernatant fractions of a rat-liver homogenate.19 

[4,8,12,13,17,21-3H]Squalene was prepared similarly 
from DL-[5-3H2]mevalonic acid dibenzylethylamine salt 
and then converted to the 2,3-oxide.1-3 Both the r e ­
labeled squalene and the 3H-labeled squalene 2,3-oxide 
were purified chromatographically, and the identity and 
homogeneity of each were established by cochromatog-
raphy with nonradioactive material and conversion to 
several derivatives all having the same molar specific 
activity. 

The 14C-labeled squalene (2.3 X 107 dpm; diluted 
with 2 mg of nonradioactive squalene) and the 3H-
labeled squalene 2,3-oxide (3.3 X 10s dpm; diluted 
with 3 mg of nonradioactive squalene 2,3-oxide) were 
mixed,20 and the 3H: 14C ratio was found to be 14.2. 
The mixture was dissolved in 12 ml of ethanol, and 1-ml 
portions were injected into 12 flasks, each containing 
500 ml of peptone culture fluid.21 After a growth 
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period of 40 hr the cells were harvested22 and Iyo-
philized, the lipids were extracted (1.4 g), and the non-
saponiflable fraction (60 mg) was chromatographed on a 
silicic acid column (10 g) with 18 successive 25-ml por­
tions of 4% ether in 40-60° petroleum ether. The ap­
propriate fractions were combined to give 16.8 mg of 
tetrahymanol. After three recrystallizations from 95 % 
ethanol 8.9 mg of pure material was obtained, having 
a 3H:14C ratio of 0.025 (14C specific activity 2.64 X 
105 dpm/mg, representing 10% of the total 14C incu­
bated). This corresponds to a gross 14C enrichment 
factor of 570, so that at least 99.8 % of the tetrahymanol 
originates from squaiene directly and is not derived 
from squaiene 2,3-oxide. 

Certain other chromatographic fractions of the non-
saponifiable lipids were found to contain large amounts 
of tritium. From one of these there was isolated, in 
impure form, material with the properties of squaiene 
2,3-oxide (cochromatography, derivative formation, 
and conversion to [3H]cholesterol by a rat-liver ho-
mogenate18'19). This implies that squaiene 2,3-oxide is 
transported into the cells and that a small portion sur­
vives the drastic work-up procedures. 

These results are consistent23 with the hypothesis that 
the biosynthesis of tetrahymanol involves a nonoxida-
tive, proton-initiated cyclization of squaiene. 
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The Biosynthesis of Tetrahymanol from 
(4i?)-[4-3H-2-14C]Mevalonic Acid 

Sir: 

Cornforth, et ah, have proved that the biosynthesis 
of squaiene,1-2 lanosterol,2 and cholesterol2 in rat liver 
preparations entails the stereospecific elimination of the 
pro-4S protons and retention of the pro-4J? protons of 
(3jR)-mevalonic acid (MVA) (1). A similar pattern 
has been observed to hold for the formation of squaiene 
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and 3-oxygenated polycyclic triterpenes in other 
species.3-5 In contrast, the biosynthesis of rubber6 

and (in part) betulaprenols7 involves the reverse stereo-
specificity, with the pro-4i? protons being eliminated. 

The cyclization of squaiene1-5 to 3-oxygenated tri­
terpenes and sterols has been demonstrated to proceed 
via the intermediacy of squaiene 2,3-oxide in several 
species.8-13 However, we have recently reported14 

evidence for the existence of a new, nonoxidative, "pro­
ton-initiated" mechanism of squaiene cyclization in 
the biosynthesis of the 3-deoxytriterpene tetrahymanol 
(2)15-17 in the protozoan Tetrahymena pyriformis. 

Thus, when this protozoan was grown in a medium 
containing 14C-labeled squaiene and 3H-labeled squa­
iene 2,3-oxide, the resulting tetrahymanol contained 
only 14C and was devoid of tritium. It therefore be­
came of importance to determine the pattern of proton 
retention and elimination from C-4 of mevalonic acid 
that operates in the biosynthesis of triterpenes in T. 
pyriformis. Our examination of this question forms 
the subject of this communication. 

Racemic (3i?,4i?-35,45)-[4-3H]mevalonic acid diben-
zylethylamine salt (98 fxCi), prepared according to the 
procedure of Cornforth and Popjak,1 was combined 
with (3i?5)-[2-14C]mevalonic acid dibenzylethylamine 
salt (20 juCi) (3H: 14C ratio 4.88, measured on the N-
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